Conversion Factors

U.S. Customary Units to SI Units

To convert from	To	Multiply by
(Acceleration)		
foot/second ${ }^{2}$ (ft/sec ${ }^{2}$)	meter/second ${ }^{2}\left(\mathrm{~m} / \mathrm{s}^{2}\right)$	$3.048 \times 10^{-1 *}$
inch/second ${ }^{2}$ (in./sec ${ }^{2}$)	meter/second ${ }^{2}\left(\mathrm{~m} / \mathrm{s}^{2}\right)$	$2.54 \times 10^{-2 *}$
(Area)		
foot ${ }^{2}\left(\mathrm{ft}^{2}\right)$	meter ${ }^{2}\left(\mathrm{~m}^{2}\right)$	9.2903×10^{-2}
inch ${ }^{2}$ (in. ${ }^{2}$)	meter ${ }^{2}$ (m2)	$6.4516 \times 10^{-4 *}$
(Density)		
pound mass/inch ${ }^{3}$ (lbm/in. ${ }^{3}$)	kilogram/meter ${ }^{3}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$	2.7680×10^{4}
pound mass/foot ${ }^{3}\left(\mathrm{lbm} / \mathrm{ft}^{3}\right)$	kilogram/meter ${ }^{3}\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$	1.6018×10
(Force)		
kip (1000 lb)	newton (N)	4.4482×10^{3}
pound force (lb)	newton (N)	4.4482
(Length)		
foot (ft)	meter (m)	$3.048 \times 10^{-1 *}$
inch (in.)	meter (m)	$2.54 \times 10^{-2 *}$
mile (mi), (U.S. statute)	meter (m)	1.6093×10^{3}
mile (mi), (international nautical)	meter (m)	$1.852 \times 10^{3 *}$
(Mass)		
pound mass (lbm)	kilogram (kg)	4.5359×10^{-1}
slug (lb-sec ${ }^{2} / \mathrm{ft}$)	kilogram (kg)	1.4594×10
ton (2000 lbm)	kilogram (kg)	9.0718×10^{2}
(Moment of force)		
pound-foot (lb-ft)	newton-meter ($\mathrm{N} \cdot \mathrm{m}$)	1.3558
pound-inch (lb-in.)	newton-meter ($\mathrm{N} \cdot \mathrm{m}$)	0.11298
(Moment of inertia, area)		
(Moment of inertia, mass)		
pound-foot-second ${ }^{2}$ (lb-ft-sec ${ }^{2}$)	kilogram-meter ${ }^{2}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$	1.3558
(Power)		
foot-pound/minute (ft-lb/min)	watt (W)	2.2597×10^{-2}
horsepower ($550 \mathrm{ft}-\mathrm{lb} / \mathrm{sec}$)	watt (W)	7.4570×10^{2}
(Pressure, stress)		
atmosphere (std)(14.7 lb/in. ${ }^{2}$)	newton/meter ${ }^{2}$ ($\mathrm{N} / \mathrm{m}^{2}$ or Pa)	1.0133×10^{5}
pound/foot ${ }^{2}\left(\mathrm{lb} / \mathrm{ft}^{2}\right)$	newton/meter ${ }^{2}$ ($\mathrm{N} / \mathrm{m}^{2}$ or Pa)	4.7880×10
pound/inch ${ }^{2}$ (lb/in. ${ }^{2}$ or psi)	newton/meter ${ }^{2}\left(\mathrm{~N} / \mathrm{m}^{2}\right.$ or Pa$)$	6.8948×10^{3}

Conversion Factors

U.S. Customary Units to SI Units

To convert from

(Spring constant) pound/inch (lb/in.)
(Velocity)
foot/second (ft/sec)
knot (nautical mi/hr)
mile/hour (mi/hr)
mile/hour (mi/hr)
(Volume)
foot ${ }^{3}\left(\mathrm{ft}^{3}\right)$
inch 3 (in. ${ }^{3}$)
(Work, Energy)
British thermal unit (BTU)
foot-pound force (ft-lb)
kilowatt-hour (kw-h)

To
newton/meter (N / m)
meter/second (m/s)
meter/second (m / s)
meter/second (m/s)
kilometer/hour (km/h)
$\begin{array}{ll}\operatorname{meter}^{3}\left(\mathrm{~m}^{3}\right) & 2.8317 \times 10^{-2} \\ \operatorname{meter}^{3}\left(\mathrm{~m}^{3}\right) & 1.6387 \times 10^{-5}\end{array}$
$\operatorname{meter}^{3}\left(\mathrm{~m}^{3}\right)$
joule (J)
joule (J)
joule (J)

Multiply by
1.7513×10^{2}
$3.048 \times 10^{-1 *}$
5.1444×10^{-1}
$4.4704 \times 10^{-1 *}$
1.6093
1.0551×10^{3}
1.3558
$3.60 \times 10^{6 *}$
*Exact value

UNIVERSITYOFBASRAH COLLEGEOF ENGINEERING

MECHANICAL ENGINEERING DEPARTMENT

Law of Gravitation

In statics as well as dynamics we often need to compute the weight of a body, which is the gravitational force acting on it. This computation depends on the law of gravitation, which was also formulated by Newton. The law of gravitation is expressed by the equation;

$$
\begin{equation*}
F=G \frac{m_{1} m_{2}}{r^{2}} \tag{1/2}
\end{equation*}
$$

where F is the mutual force of attraction between two particles; G is a universal constant known as the constant of gravitation; m_{1}, m_{2} are the masses of the two particles; r is the distance between the centers of the particles
The mutual force of attraction between two particles; G a universal constant known as the constant of gravitation; m_{1}, m_{2} the masses of the two particles; r the distance between the centers of the particles. The mutual forces F obey the law of action and reaction, since they are equal and opposite and are directed along the line joining the centers of the particles, as shown in Fig. 1/7. By experiment the gravitational constant is found to be $G=6.673 \times 10^{-11} \mathrm{~m}^{3} /\left(\mathrm{kg} . \mathrm{s}^{2}\right)$.

Gravitational Attraction of the Earth

Gravitational forces exist between every pair of bodies. On the surface of the earth the only gravitational force of appreciable magnitude is the force due to the attraction of the earth. For example, each of two iron spheres 100 mm in diameter is attracted to the earth with a gravitational force of 37.1 N , which is its weight. On the other hand, the force of mutual attraction between the spheres if they are just touching is 0.0000000951 N . This force is clearly negligible compared with the earth's attraction of 37.1 N . Consequently the gravitational attraction of the earth is the only gravitational force we need to consider for most engineering applications on the earth's surface.
The gravitational attraction of the earth on a body (its weight) exists whether the body is at rest or in motion. Because this attraction is a force, the weight of a body should be expressed in newtons (N) in SI units and in pounds (lb) in U.S. customary units. Unfortunately in common practice the mass unit kilogram (kg) has been frequently used as a measure of weight. This usage should disappear in time as SI units become more widely used, because in SI units the kilogram is used exclusively for mass and the newton is used for force, including weight.

UNIVERSITY OF BASRAH COLLEGEOF ENGINEERING

MECHANICAL ENGINEERING DEPARTMENT

For a body of mass m near the surface of the earth, the gravitational attraction F on the body is specified by Eq. 1/2. We usually denote the magnitude of this gravitational force or weight with the symbol W. Because the body falls with an acceleration g, Eq. 1/1 gives:

$$
\begin{equation*}
W=m g \tag{1/3}
\end{equation*}
$$

Figure 1/7
The weight W will be in newtons (N) when the mass m is in Kilograms (kg) and the acceleration of gravity g is in meters per second squared ($\mathrm{m} / \mathrm{s}^{2}$). In U.S. customary units, the weight W will be in pounds (lb) when m is in slugs and g is in feet per second squared. The standard values for g of $9.81 \mathrm{~m} / \mathrm{s}^{2}$ and $32.2 \mathrm{ft} / \mathrm{sec}^{2}$ will be sufficiently accurate for our calculations in statics. The true weight (gravitational attraction) and the apparent weight (as measured by a spring scale) are slightly different. The difference, which is due to the rotation of the earth, is quite small and will be neglected.

Accuracy, Limits, and Approximations

The number of significant figures in an answer should be no greater than the number of figures justified by the accuracy of the given data. For example, suppose the $24-\mathrm{mm}$ side of a square bar was measured to the nearest millimeter, so we know the side length to two significant figures. Squaring the side length gives an area of $576 \mathrm{~mm}^{2}$. However, according to our rule, we should write the area as $580 \mathrm{~mm}^{2}$, using only two significant figures. When calculations involve small differences in large quantities, greater accuracy in the data is required to achieve a given accuracy in the results. Thus, for example, it is necessary to know the numbers 4.2503 and 4.2391 to an accuracy of five significant figures to express their difference 0.0112 to three-figure accuracy. It is often difficult in lengthy computations to know at the outset how many significant figures are needed in the original data to ensure a certain accuracy in the answer. Accuracy to three significant figures is considered satisfactory for most engineering calculations. In this text, answers will generally be shown to three significant figures unless the answer begins with the digit 1 , in which case the answer will be shown to four significant figures.

